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RELAXATION OF A LOW-INTENSITY ATOMIC BEAM

IN A QUIESCENT GAS

UDC 533.72:539.188A. A. Morozov

Relaxation of a low-intensity atomic beam in a gas at rest is examined by means of numerical modeling
with the method of test particles. Temperature-field features in the mixing region are considered.
A relation between the relaxation length and the initial velocity and mass of injected particles is
obtained. Conditions are found under which the relaxation length is minimal.

A numerical study of relaxation of a stationary molecular beam in a gas at rest consists in the calculation
and analysis of the parameter fields of injected molecules, which results from beam relaxation from the maximum
nonequilibrium at the injection point to diffusive drift at the background-gas temperature. Numerous applied
aspects of the problem involve various relaxation stages. The relaxation of the beam governs charge-exchange
processes and determines the possibility of extraction of electron or ion beams out of technical apparatus, their
purification from neutral particles, and also methods of creating gas-jet obstructing targets [1]. The processes
that accompany gas-dynamic separation upon injection of a mixture of gases and isotopes occur at the stage of
substantial relaxation of the injected particle flow [2, 3]. In gas-mixing problems related to vacuum technologies,
characterization of complete relaxation of an injected gas in a background one is of interest. The mixing of molecular
and continuum flows during the interaction of a rocket-engine plume with the ambient high-attitude atmosphere [4],
active atmospheric probing with molecular gases or electron beams, electron-beam-assisted plasma production, and
sputtering of a target surface with high-energy beams may be considered as belonging to this class of problems.

The problem about the relaxation of a molecular beam was frequently addressed in the following simplest
formulation: a unidirectional one-velocity low-intensity beam was considered, and both the collisions of injected
particles and their effect on the background gas were ignored. The problem in such a formulation was treated both
analytically [5–8] and numerically [9–12].

In the majority of the papers, the following integral characteristics of the relaxation process were examined:
depth of penetration of heavy particles into the background gas [8, 9], characteristic time and length of the relaxation
zone [5, 10, 11], and variation of the distribution-function moments of injected particles in the course of relaxation [7].
The spatial distribution of gas-dynamic parameters of the injected gas was studied [6, 11]. The formation of
high-temperature regions in the relaxation zone during injection of light particles with a high injection velocity
was considered [12]. Despite the considerable interest in the molecular-beam relaxation process, no exhaustive
description of the phenomenon can be gained from the data obtained.

The present work, devoted to numerical modeling of relaxation of a beam of monoatomic particles in the above
formulation, is a continuation of [11]. We consider the special features of the spatial distribution of temperature
in the relaxation zone, analyzing simultaneously the distribution of translational energy along different directions
in the region with a substantially nonequilibrium state of the gas. Special attention was paid to estimating the
relaxation length as a function of the mass and velocity of injected particles using various criteria in a wide range
of these parameters.
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1. Formulation of the Problem and Main Definitions. We consider the scattering of a unidirectional
low-intensity atomic beam on an equilibrium background gas consisting of monoatomic particles. The particles
of the beam are injected from a point source. The initial velocities of all atoms in the beam are identical. The
collisions of injected particles and their action on the background-gas particles are ignored. The problem is treated
using the method of test particles [13].

The spatial motion of particles is traced in a cylindrical volume, with complete absorption of injected particles
assumed at its boundary. The direction of the cylinder axis coincides with the injection direction. The dimensions
of the cylindrical volume are chosen so that to avoid any appreciable influence of the boundaries on the relaxation
zone of injected particles. Considering the problem geometry, we introduce the following cylindrical coordinates:
r is the distance to the axis and ε is the azimuth angle, the axis x coincides with the injection direction, and the
origin with the position of the source.

To describe the interaction between atoms, we use the hard-sphere model [14]. As a length unit, we use the
mean free path of the background-gas particles λ0 = 1/(n0σ

√
2) (n0 is the number density of the particles and σ is

their collision cross-section) and, as velocity and time units, their most probable thermal velocity c0 = (2kT0/m0)1/2

(k is the Boltzmann constant, T0 is the background-gas temperature, and m0 is the mass of a background-gas
particle), and the time t0 = λ0/c0. From the gained data about the state of injected particles in different parts of
the cylindrical volume, the density, velocity, energy, and translational temperature T were calculated. Additionally,
we calculate the temperature components T‖ and T⊥ parallel and transverse to the velocity vector, respectively,
which offers the possibility of analyzing the degree of nonequilibrium along various directions in the relaxation zone.
To calculate T‖ and T⊥, in each cell we use a local coordinate system (x′, r′) moving at a velocity equal to that of the
gas in the cell: the direction of the x′ axis coincides with that of the velocity vector and the r′ axis, normal to the
x′ axis, lies in the xr plane. The temperature components are calculated from the formulas T‖ = m(〈u2

x′〉−〈ux′〉2)/k
and T⊥ = m〈u2

r′〉/k [14], where m is the mass of an injected particle and ux′ and ur′ are the projections of the
particle velocity onto the x′ and r′ axes, respectively.

The numerical experiments were conducted in a wide range of the masses of injected light particles (M =
m/m0 < 1) and heavy particles (M > 1). The beam velocity was varied from zero to the values two orders of
magnitude higher than the thermal velocity of background-gas particles. The ratios between the masses M and
velocities S = u0/c0 (u0 is the initial velocity of the injected gas) were the problem parameters.

To describe the relaxation zone, we calculated integral characteristics of the process, which were uniquely
determined by the parameters S and M . The integral characteristics could be conveniently drawn considering the
time evolution of individual particles. To this end, a period during which a particle resided in a volume of interest
was divided into intervals of length ∆t. To model the motion of the particle at the times t1 = ∆t, t2 = 2∆t, . . . ,
tj = j∆t, . . . , we determined the axial velocity of the particle uj , its axial coordinate xj , and the distance to the
injection point dj = (x2

j + r2
j )

1/2 (rj is the radial coordinate). In averaging the quantities over the whole ensemble
of injected particles, we calculated the depth of their penetration into the background gas Xj = 〈xj〉, the distance
to the injection point Dj = 〈dj〉, the energy component (Ex)j = 0.5m〈u2

j 〉, and the axial-velocity distribution
function fj(u). As a consequence, for a sufficiently small value of ∆t (in the present calculations, this value was
∆t = 0.1t0), we could reconstruct the time dependences of the above-indicated quantities X(t), D(t), Ex(t), and
f(u, t).

For an arbitrary ratio of the masses M , the mean-mass motion of the particles at an infinitely large distance
to the source is strictly radial, the same as the motion from some fictitious source with a center at the axis of the
cylindrical volume that does not coincide with the injection point. The distance from the fictitious source to the
injection point Ls may be used to estimate the length of the relaxation zone [11]. To calculate Ls, we invoke the
notion of the penetration depth of injected particles X(t). With increasing t, the dependence X(t) tends to a
limiting value X(∞), which coincides with the distance from the injection point to the fictitious source.

To estimate the distance at which the injected particle “forgets” the direction of its initial motion, we use
the notion of the momentum-relaxation length Li [10, 11]. For each particle, we calculated the axial coordinate xi
at which its axial velocity changed its sign for the first time after the injection (at that moment the particle started
moving in the direction opposite to injection). The momentum-relaxation length was calculated as an average value
of this coordinate for all test particles: Li = 〈xi〉.

The degree of nonequilibrium of the state of the injected gas could be judged most accurately by comparing
between the calculated velocity-distribution function with the equilibrium one at the background-gas temperature.
To determine the size of the region with the nonequilibrium state of the gas, we used the notion of the distribution-
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Fig. 1. Streamlines (straight lines) and fields of the temperature com-
ponents parallel (a) and normal (b) to the local streamline (M = 1
and S = 1): the dotted, dashed, and dot-and-dashed curves show the
relaxation surfaces for the energy, temperature, and temperature com-
ponents, respectively.

function relaxation length. At certain moments (from the time of particle injection into the gas), we calculated the
area of the region bounded by the equilibrium and nonequilibrium distribution functions:

∆f(t) =
∫

max{0, fM (u)− f(u, t)} du.

Here fM (u) = (c0π1/2)−1 exp (−(u/c0)2) is the Maxwellian distribution function for the thermal-velocity component
at the background-gas temperature and f(u, t) is the calculated axial-velocity distribution function of injected
particles. The relaxation time of the distribution function was found as an interval between the moment of injection
and the time tf at which the area ∆f became smaller than 1% of the total area under the distribution function,

i.e., ∆f(tf ) = 0.01
∫
fM (u) du, and the distribution-function relaxation length Lf was determined as the mean

distance from the injection point D(tf ) corresponding to this moment. The calculations show that it took a longer
time for the axial velocity to relax compared to the radial velocity; for that reason, the axial velocity component
was used to determine the distribution-function relaxation length Lf .

In addition, the characteristic size of the nonequilibrium zone was estimated through a comparison between
the energy components of injected and background particles. To this end, for certain moments in time, we calculated
the difference between the mean energy Ex(t) and the respective energy of background particles Ex0 = 0.25m0c

2
0.

Then, the energy-relaxation time was determined as the interval between the injection moment and the time tE
at which Ex and Ex0 became identical within 1%, and the energy-relaxation length LE was determined as the
distance D(tE). It should be noted that the total energy could not be used to calculate the energy-relaxation length
since, during injection of heavy particles with certain velocities, the energy of injected and background particles
throughout the relaxation remained almost identical, though the injected gas was in an essentially nonequilibrium
state and the total energy-relaxation length was equal to zero [11].

To test the program, we performed the above-described calculations for the values of parameters taken from
[9, 10]. We calculated the depth of penetration of injected particles into the background gas X(t) [9] and the
momentum-relaxation length Li [10]. The results were found to agree well with the data obtained in [9, 10].
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Fig. 2. Temperature field (M = 10 and S = 1): the
dotted curve refers to the surface with the highest tem-
perature and the dashed curve refers to the surface be-
yond which the temperature and the background-gas
temperature are identical within 2%.

2. Spatial Configuration of the Relaxation Zone. The analysis of nonequilibrium in the relaxation zone
was performed, based on a comparison between the temperature components determined for different directions.
Figure 1 shows the fields of the temperature components parallel (T‖) and normal (T⊥) to the local streamline for
M = 1 and S = 1. The isotherms are pear-shaped. The temperature varies from zero at the injection point to the
background value at the periphery. The parallel component (Fig. 1a) attains its highest value, T‖ ≈ 1.04T0, at the
surface of an ellipsoid with the semiaxes 4λ0 and 3λ0, and then it decreases to the background temperature. The
normal component (Fig. 1b) monotonically increases to the background temperature. A comparison between T‖
and T⊥ shows that the distribution of particle velocities in different directions may vary appreciably (within an
ellipsoid with a characteristic size R = 4λ0, the difference between T‖ and T⊥ is greater than 10%).

The calculated size of the mixing region depends on the criterion used to determine the relaxation boundary.
The energy of injected particles becomes equal to the energy of background particles (within 1%) outside the ellipsoid
with a center near a fictitious source (xs ≈ 1.5λ0) and a characteristic size R ≈ 4λ0 (see the dotted curves in Fig. 1).
The injected-gas temperature becomes equal to the temperature of background particles (within 1%) only outside
the ellipsoid with a characteristic size R ≈ 7λ0 (dashed curves in Fig. 1), the temperature components on this
surface being significantly different: T‖ ≈ 1.02T0 and T⊥ ≈ 0.975T0. Complete relaxation, when the temperatures
of the injected and background gases become equal to each other and the velocity distribution of injected particles
along different directions becomes isotropic (the values of T‖ and T⊥ are identical within 1%), occurs only outside
the sphere of radius R = 11λ0 (dot-and-dashed curves in Fig. 1).

Determining the integral relaxation length from the trajectories of individual particles (namely, from their
axial velocities), we obtain LE = 3.46λ0 and Lf = 4.03λ0, which fairly well agrees with the energy-relaxation length
obtained from the spatial configuration (R ≈ 4λ0). Thus, the integral relaxation length is a characteristic size of
the region with a nonequilibrium state of the gas at the initial stage of relaxation, whereas the complete-relaxation
zone may be much greater.

In varying the value of M or S to either side from unity, the structure of the relaxation zone changes
drastically. As the mass ratio M increases, the relaxation zone becomes more elongated in the injection direction.
A decrease in the mass ratio M makes the relaxation zone more spherosymmetric. It is of interest to consider how
the relaxation zone changes with increasing mass of injected particles.

Figure 2 shows the temperature field for S = 1 and M = 10. The position of the fictitious source is shifted
towards the injection direction; the source lies at the distance Lf ≈ 9.4λ0 from the source, which corresponds to
a strongly anisotropic relaxation zone. Here, a characteristic feature of the temperature field is the nonmonotonic
behavior of temperature along the normal to the injection line. The injected gas has an extremely high temperature
in a vicinity of a certain surface close to an ellipsoid of revolution with the rotation axis aligned with the injection
direction (dotted curve in Fig. 2). The major and minor semiaxes of the ellipsoid are equal to 4λ0 and 1.5λ0.
Inside the ellipsoid, there is a region with a strongly nonequilibrium state of the gas. In this region, as well as
in the case of M = 1, the temperature components parallel and normal to the local streamline behave differently.
Outside this surface with an elevated temperature, there is a region with a lower temperature. The temperature
decreases downstream from its maximum value 1.2T0 to 0.9T0, and then it gradually increases to the background-gas

644



Fig. 3. Momentum-relaxation length Li versus the mass ratio at a constant initial injection veloc-
ity (a) and versus the initial injection velocity at a constant mass ratio (b): the solid curves refer
to modeling data and the dashed curves refer to values estimated by formula (3.1).

temperature. The temperature becomes isotropic (the injected-gas and background-gas temperatures are identical
within 2%) only outside a spherical surface of radius 12λ0 with the center at the point x = 8λ0 (dashed curve in
Fig. 2).

3. Integral Characteristics of the Process. A study of the relaxation kinetics of an atomic beam
allows one to obtain sufficiently full information about the integral characteristics and, in particular, to obtain more
accurate relevant data compared to [10, 11].

The relation between the momentum-relaxation length and the mass and velocity ratios is rather trivial
(Fig. 3). Based on the calculated values, we made an attempt to fit these dependences with a sufficiently simple
function. In the range of the mass ratio 1 6M 6 20 and velocity ratio 2 6 S 6 50, the fitting function found is

Li(M,S) = (1.55M − 0.8) ln [(S + 1)(10M + 3)/(10M − 9)]. (3.1)

Figure 3 compares the momentum-relaxation length obtained by numerical simulation with that predicted
by formula (3.1). Here, we consider the dependence of Li on the mass at fixed values of the initial injection velocity
S = 1,

√
10, 10, and 50 (Fig. 3a) and on the initial injection velocity at fixed masses M = 1, 5, 10, and 20 (Fig. 3b).

It is seen that, with an increase in M and S, the difference between the calculated values and the values predicted
by formula (3.1) increases.

The behavior of the energy-relaxation length and that of the distribution-function relaxation length are more
intricate. Figures 4 and 5 show, respectively, the above-indicated quantities as functions of the mass ratio at fixed
injection velocities S = 0.5, 1,

√
10, and 10 and as functions of the initial injection velocity at fixed mass ratios

M = 0.05, 0.1, 1, and 10. It is seen that there is a clear correlation between the two lengths.
At a fixed velocity ratio S and M → 0 and M → ∞, the relaxation length L increases indefinitely (see

Fig. 4). At all values of the velocity ratio, the quantity L attains a minimum at M = 1, which corresponds to a
more rapid relaxation in the case of identical masses of particles. Besides, if particles are injected with a high initial
velocity (S > 1), a second minimum of L appears at such a mass ratio Mmin at which the initial injected-gas energy
Emin is 20% lower than the background-gas energy E0 = 0.75m0c

2
0. For instance, for S =

√
10, we have Mmin = 0.12

and Emin = 0.8E0 (see Fig. 4c), and for S = 10, we have Mmin = 0.012 and Emin = 0.8E0 (see Fig. 4d).
At a fixed mass ratio M and S →∞, the relaxation length L increases (see Fig. 5). As S → 0, the value of L

saturates at a certain non-zero level. For heavy particles (M > 1), as the ratio S increases, a monotonic growth
of the relaxation length is observed, whereas the dependence of the relaxation length for light particles (M < 1)
displays a minimum. The minimum relaxation length Lmin is attained at such an initial injection velocity Smin at
which the initial injected-gas energy Emin is approximately 30% lower than the background-gas energy E0. For
instance, for M = 0.05, we have Smin = 4.5 and Emin = 0.67E0 (see Fig. 5a), whereas for M = 0.1, we have
Smin = 3.3 and Emin = 0.73E0 (see Fig. 5b).
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Fig. 4 Fig. 5

Fig. 4. Distribution-function relaxation length Lf (solid curves) and energy-relaxation length LE
(dashed curves) versus mass relation for S = 0.5 (a), 1 (b),

√
10 (c), and 10 (d).

Fig. 5. Distribution-function relaxation length Lf (solid curves) and energy-relaxation length LE
(dashed curves) versus the initial velocity for M = 0.05 (a), 0.1 (b), 1 (c), and 10 (d).

The occurrence of the minimum point at M < 1 can be explained by the fact that, during the collisions
with heavy particles, the light particles rapidly lose the directed velocity, with redistribution of translational energy
among the three velocity components. If the initial energy of injected light particles differs considerably from
the energy of background-gas particles, then, after several collisions, the injected particles acquire a Maxwellian
velocity distribution with a temperature different from the background-gas value. In subsequent collisions with
background particles, there will be further exchange by energy between the injected and background-gas particles,
and the injected-gas temperature will gradually approach the background-gas value. Since the masses of injected
and background-gas particles differ considerably, the energy exchange in each collision is insignificant, and the
relaxation process is long. If the initial energy of injected particles is close to the energy of background-gas
particles, then, already after several first collisions and redistribution of the initial energy, the injected particles
will have an equilibrium distribution with a temperature close to the background-gas value. Thus, during injection
of light particles with an energy close to the energy of background-gas particles, the relaxation process will be
substantially accelerated. The evolution of the distribution function f(u, t) of the particle velocity parallel to the
injection axis shown in Fig. 6 for M = 0.1 and the initial velocities S = 2,

√
10, and 6 at the times t = t0, 2t0,

and 3t0 provides a support for this explanation. For MS2 = 1 and S =
√

10 (E = 0.67E0), the distribution
function for the particle velocity already at t = 3t0 differs from the equilibrium velocity-distribution function for
the background-gas temperature by no more than 1%. For S = 2 and 6 (E = 0.27E0 and 2.4E0), the distribution
functions at the same moment are close to Maxwellian ones but have a temperature respectively lower and higher
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Fig. 6. Evolution of the velocity-distribution function f(u, t) of injected
particles for the velocity parallel to the injection axis (M = 0.1) for
t = t0 (a), 2t0 (b), and 3t0 (c); curves 1, 2, and 3 refer to S = 2,√

10, and 6, respectively; curve 4 is the Maxwellian distribution for the
background-gas temperature.

than the background-gas temperature (T ≈ 0.8T0 and 1.4T0), the relaxation time (7t0 and 7.5t0) being much more
longer than for S =

√
10 (3t0). The relaxation lengths for the velocity ratios under consideration are 7λ0, 4.7λ0,

and 8.6λ0 (see Fig. 5b), i.e., the length decreases approximately by 40% at the minimum point.
It should be noted that the above effects do not depend on the criterion used to determine the relaxation

length. Above, this length was determined using, as such a criterion, attainment of a 1% difference between the
energies or distribution functions of injected and background-gas particles. With the relaxation length determined
from the condition that the above differences equal 0.5 or 2%, although the relaxation length changes slightly,
the L(M) and L(S) dependences still behave similarly.

From the comparative analysis of the momentum-relaxation length, energy-relaxation length, and the dis-
tance from the injection point to the fictitious source, the following conclusions can be drawn. In the considered
range of mass and velocity ratios, the distance between the injection point and the fictitious source is somewhat
greater than the momentum-relaxation length (approximately by 0.6λ0). The energy-relaxation length is always
greater than the momentum-relaxation length. For heavy particles, this difference ranges between one and six
mean free paths. For light particles with M → 0, the energy-relaxation length increases, whereas the momentum-
relaxation length tends to a certain value equal to the mean free path for the given velocity S. For heavy particles,
the energy-relaxation length and the velocity-distribution function relaxation length acquire almost identical values;
hence, during injection of heavy particles (M > 1), any of the above-considered characteristics (Li, LE , Lf , or Ls)
may be used to estimate the relaxation-zone length.

Conclusions. Based on direct modeling with the method of test particles, the present study of the kinetics
of relaxation of an atomic beam in a gas at rest has revealed qualitative and quantitative relaxation characteristics
for atomic-beam relaxation to thermal equilibrium with the background gas within the range of the mass ratio of
injected and background-gas particles 0.005–50 and within the range of their velocity ratio 0.1–100 (with atoms
modeled as hard spheres). The conclusions drawn from the qualitative analysis also remain valid for a wider range
of these parameters.
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A formula is obtained which relates the momentum-relaxation length with the mass and velocity ratios M
and S in the ranges 1 6 M 6 20 and 2 6 S 6 50. A relation is found between the energy-relaxation length and
the velocity distribution function relaxation length, and the mass ratio and initial injection velocity. This relation
is not monotonic for the most part, with minima occurring at MS2 ∼ 1. It is found that, during injection of heavy
particles (M > 1), any of the considered characteristics (Li, LE , Lf , or Ls) may be used to estimate the length
of the relaxation zone. The data obtained permit estimation of the length of the nonequilibrium mixing zone of
injected and background gases at a low intensity of the atomic beam.
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